Doses: Difference between revisions

From cleanroom
Jump to navigation Jump to search
Line 171: Line 171:
125 kV:
125 kV:


InP: 607 uC/cm2 and phi = 35%
InP: 572 uC/cm2 and phi = 41%


InAs:  589 uC/cm2 and phi = 33%
InAs:  589 uC/cm2 and phi = 33%
Line 200: Line 200:
|906/ 45%
|906/ 45%
|589/ 33%
|589/ 33%
|607/ 35%
|572/ 41%
|752/ 39%
|752/ 39%
|?
|?

Revision as of 12:38, 4 August 2018

125 kV
Si InAsUC InPUC GaAsUC SiGe
A2 1000 700 ? ? ?
A4 1000 700 ? 630 ?
A6 1200 ? ? 760 ?
El6 ? ? ? ? ?
El9 ? ? ? 420 ?
CSAR4 430 ? ? ? ?
CSAR9 ? ? ? ? ?
CSAR13 450 ? ? 350 ?
50k+A4 ? ? ? 745 ?
100 kV
Si InAsUC InPUC GaAsUC SiGe
A2 900 ? 300 ? ?
A4 900 ? 500 630 ?
A6 1000 ? ? 670 ?
El6 ? ? ? ? ?
El9 ? ? ? ? ?
CSAR4 400 ? ? ? ?
CSAR9 ? ? ? ? ?
CSAR13 ? ? ? ? ?
50k+A4 ? ? ? 630 ?
  • GaAs: Uniform clearing
  • InP: Uniform clearing
  • InAs: Uniform clearing
  • Si: Optimal contrast

Note

Base dose does not change with resist thickness, developing time does. However, if the developing time is fixed, say to 60s, a thinner layer of resist will need lower "base dose", since it's being over developed.

Experimental

  • Dose density matrix for small and large spot size.
  • Measure CD as a function of dose and density for the two spot sizes.
  • Intersection of the two plots, for a given density gives isofocal dose.
  • Convert doses to dose factors, given that 0% iso-dose factor == PEC_df 0%
  • Base dose == isofocal dose 0% / PEC_df 0%
  • For density larger than 0%, predicted dose factor = (1+η)/(1+η*ρ*(1+φ/100))
    • 1+η = PEC_df 0%
    • Fit experimental isofocal dose factors and predicted dose factor by varying psi


125 kV:

InP: 572 uC/cm2 and phi = 41%

InAs: 589 uC/cm2 and phi = 33%

Si: 906 uC/cm2 and phi = 45%

GaAs:752 uC/cm2 and phi = 39%


125 kV
Si (μC/cm2) / φ InAs (μC/cm2) / φ InP (μC/cm2) / φ GaAs (μC/cm2) / φ SiGe (μC/cm2) / φ
A2 ? ? ? ? ?
A4 906/ 45% 589/ 33% 572/ 41% 752/ 39% ?
A6 ? ? ? ? ?
El6 ? ? ? ? ?
El9 ? ? ? ? ?
CSAR4 ? ? ? ? ?
CSAR9 ? ? ? ? ?
CSAR13 ? ? ? ? ?
50k+A4 ? ? ? ? ?